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Abstract
The phase diagram for a two-dimensional self-avoiding walk model on
the square lattice incorporating attractive short-ranged interactions between
parallel sections of walk is derived using numerical transfer matrix techniques.
The model displays a collapse transition. In contrast to the standard θ -point
model, the transition is first order. The phase diagram in the full fugacity–
temperature plane displays an additional transition line, when compared to
the θ -point model, as well as a critical transition at finite temperature in the
Hamiltonian walk limit.

PACS numbers: 05.40.Fb, 05.20.+q, 05.50.+q, 36.20.−r, 64.60.−i

1. Introduction

Self-avoiding walks have been widely studied as models of polymers in dilute solution [1].
A self-avoiding walk on a lattice is defined as a random walk which is forbidden from visiting
the same lattice-site more than once [1]. In the limit of very long walks it models a polymer in
a good solvent. In order to model the relative affinity between the monomers (compared with
the solvent) an attractive energy is introduced between non-consecutively visited nearest-
neighbour sites [2, 3]. This is the standard θ -point model. At high temperatures the polymer
is happy to be in solution. As the temperature is lowered the polymer tends to collapse in on
itself, and at a given temperature will precipitate from solution. For an idealized infinitely
long polymer the high temperature and low temperature regimes are separated by a phase
transition occurring at a temperature known as the theta temperature, Tθ, [1, 4, 5]. In the grand
canonical description the average length of the walk is controlled by a fugacity K (or chemical
potential µ where K = exp(−βµ)). At high temperatures the (average) length of the walk

0305-4470/01/479939+19$30.00 © 2001 IOP Publishing Ltd Printed in the UK 9939

http://stacks.iop.org/ja/34/9939


9940 D P Foster and F Seno

CO NH

CO NH

Figure 1. A schematic representation of hydrogen bonds in a beta sheet (From Bascle et al [11]).

diverges smoothly as a critical fugacity Kc(T ) is approached. At low temperatures the length
jumps discontinuously at a given value of the fugacity K∗(T ) (corresponding to a first-order
transition). The two lines Kc(T ) and K∗(T ) follow continuously one from the other, and the
two behaviours are separated by a tricritical point, at a temperature corresponding to Tθ . The
transition line Kc(T ) then K∗(T ) is identified with the ‘thermodynamic limit’ of the polymer
problem. Along this line, the proportion of visited sites is zero for T < Tθ and becomes
non-zero continuously for T > Tθ .

While it is clear that the main experimental interest lies in three dimensions (although there
are some experimental results also in two dimensions [6]), there has been a lot of theoretical
interest in the two-dimensional case [7–9]. This is in part due to the fact that the upper critical
dimension for a tricritical point is three [10]. In dimensions lower than three (but larger than
one) there is a possibility for a greater diversity of critical behaviours.

In this paper we investigate a two-dimensional model with a restricted set of interactions,
compared to the theta model; an interaction is only present between nearest-neighbour
non-consecutively visited sites belonging to straight portions of polymer, i.e. an interacting
site cannot sit on a corner of the walk (see figure 2). This choice of interactions may be
motivated by the rôle of hydrogen bonding in the formation of secondary structures in proteins
[11]. These bonds are formed between the CO group of one peptide and the NH group of a
nearby (non-consecutive) peptide. This bond imposes a constraint on the orientation of the
relevent peptides. This type of bonding is thought to be responsible for the formation of alpha
helices and beta sheets [12]. In our two-dimensional toy-model the formation of alpha helices
is not possible. A representation of the formation of a beta sheet through hydrogen bonding is
shown in figure 1.

Our main interest in this paper is not to give a realistic model for protein folding, but
rather to understand the influence of these apparently small modifications to the local attractive
interactions on the critical behaviour of lattice interacting self-avoiding walks. To this end we
present the phase diagram and elucidate the critical behaviour in the full fugacity–temperature
plane.

In section 2 we present in detail the model as well as the transfer matrix calculation of
the quantities of interest. In section 3 we present the phase diagram and discuss the different
transitions present. In section 4 we concentrate more specifically on the Hamiltonian walk
limit of the model in which all sites are visited exactly once. In section 5 we finish with some
concluding remarks.
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(a) (b)

(c) (d)

Figure 2. Possible configurations of nearest-neighbour non-consecutively visited sites.
Configurations of type (a) include an attractive interaction energy −ε, configurations of types
(b), (c) and (d) interact in the standard θ -point model, but here do not participate in hydrogen type
bonding.

2. The model and the transfer matrix calculation

The model studied here consists of a self-avoiding walk embedded on a square lattice. An
interaction energy −ε is assigned for each non-consecutively visited pair nearest-neighbour
sites for which the four bonds are parallel (see figure 2). A chemical potential, µ, and related
fugacityK = exp(−βµ) are associated to each step.

The grand canonical partition function is then

Z =
∑
walks

KN exp(βNI ε) (1)

where N is the number of steps in the walk and NI is the number of interactions. Quantities
of interest may be calculated as appropriate derivatives of the partition function, for example,
the density is given by

ρ = 〈N〉
�

= K

�

∂ logZ
∂K

(2)

where � is the number of lattice sites. The relative length fluctuations are related to the
derivative of ρ through

〈N2〉 − 〈N〉2

〈N〉 = K

ρ

∂ρ

∂K
. (3)

In the dilute polymer regime (small enough K ) the correlation function may be identified
with the probability that two given points are joined by a walk. In this case the correlation
length must scale in the same way as any reasonable characteristic length scale associated to
the walk. It is usual to take the radius of gyration, which corresponds to the average squared
distance the walk steps from the common centre of gravity. It follows that

RG ∼ |K −Kc|−ν (4)

where ν is defined as the standard correlation length exponent [13]. Using the relation (2),
one finds

RG ∼ 〈N〉ν (5)

from which we may see that the walk is fractal; the mass of the walk scales linearly with N,
and hence R1/ν

G . The fractal (Haussdorf ) [14] dimension of the walk is then dH = 1/ν [1]. It
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Figure 3. Example of a polymer configuration with the corresponding column states.

is usual in such problems to take equation (5) as the definition of the exponent ν [1]. In this
case, note that it only relates to the usual critical exponent in the case of a critical transition
in the dilute regime. In the collapsed phase(s) the polymer fills the lattice, the mass scales as
RdG and equation (5) gives ν = 1/d .

In this paper we propose to use a transfer matrix formalism to calculate Z as a function of
K andβε [15–17]. For convenience we shall from now on set ε = 1, which simply corresponds
to a choice of temperature scale.

The idea behind the transfer matrix formalism is to calculate the partition function on a
lattice which is infinite in one direction (the x direction, say) but finite in the other ( y) direction.
The thermodynamic limit is attained by increasing the lattice width.

The standard way of considering the problem is as follows: Define the restricted partition
function Zx(C0, Cx) as the partition function for a portion of walk between the origin and x.
The walk has a column state C0 at the origin and Cx in column x. One may then write the
following recursion relation:

Zx+1(C0, Cx+1) =
∑
Cx

Zx(C0, Cx)T (Cx, Cx+1) (6)

where T (Cx, Cx+1) is the additional Boltzmann weight to add column x + 1 in configuration
Cx+1 next to column x in configuration Cx . This forms a (transfer) matrix.

That this recursion should be valid for a spin system is fairly straightforward, since the
interactions are all local. For a polymer model it is less clear that this should be possible,
since one has to take into account non-local factors, most notably one has to ensure that the
partition function describes only one chain, without the formation of ‘orphan’ loops. This is
done by appropriately defining the column states Cx . For the self-avoiding walk problem with
no added interactions (i.e. ε = 0) it is sufficient [15] to define a column configuration by the
arrangement of horizontal bonds in the column along with information about the connectivities
between the bonds, that is information about which pairs of horizontal bonds are connected
by polymer loops to the left (taking x as increasing towards the right). See figure 3 for an
example. By successive application of (6), one finds

Zx(C0, Cx) = 〈
C0|T x |Cx

〉
. (7)



Two-dimensional self-avoiding walk with hydrogen-like bonding 9943

The situation becomes a little more complicated if interactions are to be taken into
account. It is necessary to know the column states over three columns in order to incorporate
the horizontal bonds. The appropriate modification to the above equations is [16, 18]

Zx+1(C0, C1; Cx, Cx+1) =
∑

C′
x−1,C′

x

Zx(C0, C1; C ′
x−1C ′

x)T (C ′
x−1, C ′

x; Cx, Cx+1) (8)

and

Zx(C0, C1; Cx−1, Cx) = 〈
C0, C1|T x−1|Cx−1, Cx

〉
. (9)

The primed configurations are introduced to retain the matrix notation, the elements of the
matrix are now labelled by the two column states for the input and two for the output (primed),
with the restriction that only matrix elements with Cx = C ′

x may be non-zero.
It is required that the partition function sum over walks of all possible lengths. To do this

we define a restricted partition function Zx for all the walks having a caliper extension x, i.e.
walks which are entirely confined to a strip of length x, and extend over the entire length of
the strip. This is simply Zx summed over all configurations C0, C1, Cx−1 and Cx compatible
with the starting and ending configurations of the walk. The full partition function is then
given by

Z =
∞∑
x=0

Zx+1 (10)

=
∑
b.c.

′ ∞∑
x=0

T x (11)

where the primed sum is over the boundary configurations, as described above.
Let us denote the eigenvalues of T by {λi}, numbered in the order of their moduli. The

eigenvalue of largest modulus, λ1, is always positive.
For small enough K, λ1 � 1. In this case the partition function may be written as

Z =
∑
i

αi

1 − λi(K, βε)
. (12)

The αi are essentially constants dependent on the boundary conditions, which gives for the
density

ρ = K

�

∑
i

1

1 − λi

∂λi

∂K
. (13)

If the derivative of λi is finite, which is the case at least for small enough β, the density is zero
as long as λ1 < 1 and may only change from its zero value when the average length of the
walk diverges, i.e. λ1 � 1 [17, 18]. The point λ1 = 1 is identified with the critical transition,
and is often used in polymer science to define the ‘thermodynamic limit’ of ‘very long’
polymers [1]. Another way of reaching the same conclusion is to consider two points as being
correlated if they are joined by a walk. One may then identify Zx with a two-point correlation
function, and hence identify the correlation length, ξ [17],

ξ = 1

log
(

1
λ1

) . (14)

The correlation length diverges as λ1 → 1, consistent with the identification of a critical
transition.

The above argument needs to be treated with caution. As long as the lattice width is finite,
the system is equivalent to a one-dimensional system with a finite, if large, number of states
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per site (each site corresponding to a column in our model). It is well known that a one-
dimensional system with a finite number of states per site cannot have an equilibrium-phase
transition1.

The reason for this apparent discrepancy is that the definition of ξ (14) is not valid in
the large K phase (dense polymer phase). In a spin model the partition function would have
been given by Zx in the limit x → ∞. The transfer matrix would contain all the possible
configurations, and a standard analysis shows that [20]

ξ = 1

log
(
λ0
|λ1|

) (15)

where λ0 is the largest eigenvalue and λ1 is the second largest (in modulus). To ensure the
correct construction of a single walk all configurations consisting of an empty column have
been excluded from the transfer matrix, but replaced by the sum over all possible polymer
extensions x. The consequence of this choice is that the largest eigenvalue in the zero-density
phase has been eliminated. Its value, as can be seen by inspection of the expression for ξ ,
would be λ0 = 1.

This prescription only holds as long as λ1 < 1. If λ1 > 1 then the partition function,
density and ξ are given by

Z ∼ lim
x→∞ λ

x
1 (16)

ρ = K

Lλ1

∂λ1

∂K
(17)

ξ = 1

log
(
λ1
|λ2|

) (18)

where L is the lattice width.
For convenience we impose the condition that the walk of extension x ′ in the x direction

originates at x = 0 and terminates either at x = 0 or x = x ′. As is usual in equilibrium phase
transitions, the precise choice of boundary condition does not change the critical behaviour.
Imposing this restriction it is easy to see that column configurations with even numbers of
horizontal bonds may only follow column configurations with even numbers of horizontal
bonds, and likewise for configurations with an odd number of horizontal bonds. This block
diagonalization is convenient since it transpires that for much of the phase diagram λ1 and λ2

arise in different blocks. It is relatively easy to calculate the largest eigenvalues of a matrix
using the power method [21].

3. The K–β phase diagram

The critical lines may be identified using phenomenological renormalization [22]. At a critical
point the correlation lengths for two strip widths, measured as a fraction of the strip width,
must be the same. This reflects the scale invariance of a critical system. In practice, a finite
width system is always off-critical, however,

ξL(K
∗)

L
= ξL′(K∗)

L′ (19)

gives a finite-size estimate of the critical fugacity, K∗, which will tend to the true critical
fugacity as the strip widths tend to infinity. Assuming that the system is sufficiently close to
the true critical point, the correlation length behaves (to leading order) as

ξL = A|K∗ −Kc|−ν . (20)
1 This follows directly from a Peierls type argument, see for example [19].
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Since it is the finite width of the system which prevents the correlation length from diverging,
at K∗ we have L ∝ ξL. If these two scaling laws are admitted, then a finite-size estimate of
the correlation length exponent may be calculated from the equation:

1

νL,L′
=

log
(

dξL
dK

/ dξL′
dK

)

log
(
L
L′

) − 1. (21)

There exists at least one phase transition. In the case β = 0 this corresponds to the
standard self-avoiding walk transition. As β is increased, this point extends into a line of
critical points. In analogy to the standard θ -point model, we would expect this transition to
change to first order at some given value of β = βH . As discussed in the previous section,
starting from the low-K phase, the correlation function is given by (14). In the high-K
phases the appropriate form of ξ is given by (15). The phase diagram estimates found with
phenomenological renormalization, using the appropriate form of ξ , are shown in figure 4.
As is usual in this sort of problem, there are strong parity effects, notably for the odd lattice
widths λ1 is in the odd sector of the transfer matrix, while for the even lattice widths λ1 is taken
from the even sector. The next largest eigenvalue, λ2, is in the other sector for the low-K phase
and for the high temperature high-K phase, while it is in the same sector for the high-K low
temperature phase. This observation was not used to estimate the transition lines, which were
however found assuming that λ1 and λ2 came from different sectors of the transfer matrix.
Not all the transition lines are found for even lattice widths.

Let us now characterize the different phases and transitions. For low K the average length
of the polymer is finite and the density of the polymer on the lattice must therefore be zero.
The first transition as K is increased is to one of two dense phases, depending on whether
β < βH or β > βH . It is convenient to use the density as an order parameter. For practical
reasons we choose boundary conditions in which the polymer is made to extend the length
of the lattice, between x = 0 and x → ∞. This obliges the polymer to be infinite in length
even in the zero-density phase. A choice of boundary conditions is not expected to affect the
critical behaviour of an equilibrium system. The partition function becomes Z = limx→∞ λx1
for both the high and low density phases, and ρ may be calculated using (17) in all phases.
The density will now be finite for K < Kc as long as the lattice width is finite, but must
tend to zero as L → ∞. This is indeed what is observed from the density plots shown in
figures 5 and 6.

As expected, for β < βH the behaviour of ρ and the length flucuations indicate the
existence of a line of second-order phase transitions. The line is in the self-avoiding walk
universality class, having ν = 3/4 as may be seen from the finite-size estimates for ν shown
in figure 7. The transition is to a finite-density phase.

For β > βH the density plot, given in figure 6, indicates that the transition is first order
to a dense phase. That this line corresponds to the compact polymer state is confirmed by the
observed exponent ν = 0.5 = 1/d (figure 7). A major difference with the θ -point model,
seen using the phenomenological renormalization scheme is the existence of two different
high density phases. The density plots in figure 6 for β > βH suggest that the walk changes
discontinuously from ρ = 0 to ρ = 1, and that the density of interactions saturates instantly. In
other words the lattice changes abruptly from being essentially empty to essentially full, with
a maximum density of interactions. Trivially, a lattice which is empty (a finite walk length on
an infinite lattice) has zero energy and zero entropy per site; the free energy per site is zero.
If the lattice is completely full with the interactions density saturated, the walk may only be
in one of two configurations; either all the bonds are vertical or all the bonds are horizontal.
The entropy per site in this phase is therefore also zero. Since, in this state, there is one bond
and one interaction per site, the energy per site is e = µ− ε. The transition between the two
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Figure 4. Phase diagram estimates found using phenomenological renormalization group for odd
lattice widths (top) and even lattice widths (bottom).

phases would then occur when the free energy per site, f = e − T s = e = 0, in other words
when µ = ε. Recalling the choice of ε = 1, the transition line would be K = exp(−β). This
line has been plotted for comparison on the phase diagrams, shown in figure 4. The agreement
with the observed first-order transition line is excellent.

In order to differentiate between the two high density phases, it is convenient to use the
interaction density, ρI, as an order parameter. This order parameter, along with its fluctuations,
is plotted as a function of β for K = 1.5 in figure 8. The order parameter differentiates between
the two phases since it is identically one in the high-β phase, and less than one in the low-β
phase. The variation of the order parameter appears to be fairly smooth for all lattice sizes,
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Figure 5. Plots of density, ρ, (top) and density fluctuations (bottom) for the inverse temperature
β = 0.7.

and leads one to conjecture that this high density transition is critical. Also plotted in figure 8
is the specific heat, calculated as the second derivative of the free energy with respect to the
temperature, keeping µ and ε constant.

Various estimates of the critical β for K = 1.5, calculated using the phenomenological
renormalization group and by locating the peaks in the specific heat, are given in table 1.
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Figure 6. Plot of density ρ for β = 1.1.
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Figure 7. Estimates for the exponent ν for the low-K transition line.

The various results are coherent with an estimate βc(K = 1.5) = 0.55 ± 0.01. At a critical
transition, the specific heat diverges as T → Tc with an exponent α,

C ∼ |T − Tc|α. (22)
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Figure 8. Plots of the density, ρ, (top), the specific heat, C, (middle) and the density of interactions,
ρI, (bottom) for K = 1.5.
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Table 1. Estimates for (a) βc and ν for K = 1.5 limit using phenomenological renormalization
group with strips of width L and L + 2 and (b) βc as estimated from the peak of the specific heat
and the height of the peak.

(a) (b)

L βc ν βLc Cmax

3 0.579 774 0.885 482 0.572 447 0.920 518
4 0.546 148 0.920 203 0.500 045 0.645 603
5 0.560 960 0.841 050 0.561 950 1.344 506
6 0.550 013 0.920 194 0.510 141 1.131 212
7 0.554 531 0.864 167 0.556 259 1.706 669
8 – – 0.524 612 1.494 860
9 – – 0.553 865 2.024 505

When combined with relation (20) and ξL ∝ L, this leads to the finite-size scaling result

Cmax ≈ A + BLα/ν . (23)

A three-point fit for odd widths gives α/ν = 0.67 for L = 3, 5, 7 and α/ν = 0.55 for
L = 5, 7, 9. A similar three-point fit for the even sizes, L = 4, 6, 8 gives a value of
α/ν = 0.156. If sufficiently large lattice widths are considered then A can be dropped. When
this is not the case, then the result is an effective value of the exponent, which should converge
to the correct value as the lattice width is increased. Unfortunately, the number of two-point
approximations we could construct does not allow for meaningful extrapolation. All we
could determine is that 0.156 � α/ν � 0.55 gives a reasonable limit on the possible values
of α/ν. Using the scaling relation α = 2 − dν, this gives ν as 0.78 � ν � 0.93. Note
that this range is coherent with the values of ν found from the phenomenological
renormalization group calculation, shown in table 1. Additionally, the upper boundary,
calculated from the even lattice sizes, is in good agreement with the even lattice size estimates
of ν in table 1.

It now remains to determine the nature of the transition at (KH, βH ), where the three
transition lines join. For the standard θ -point model, this point is tricritical, and corresponds
to the confluent of two transition lines, not three.

The problem we are faced with is that the phenomenological renormalization group
applied to even lattice widths does not give the first-order transition at all. When applied to the
odd lattice widths, the method is not able to follow the self-avoiding walk transition line all
the way to βH, jumping to the upper transition line just short of βH. This undershoot rapidly
becomes smaller as the lattice width is increased. Recalling that the length of the walk first
diverges when λ1 → 1 and that this condition coincides with the low-K phase transitions in
the thermodynamic limit, we can use the condition λ1(K, β) = 1 as a criterion for defining
finite-width estimates to the transition lines. The phase diagram estimates calculated using
this criterion are shown in figure 9. This method is incapable of giving the high-K transitions,
and converges more slowly than the phenomenological renormalization group, but has the
advantage that the transition lines are fairly smooth and continuous. The density and its
fluctuations, calculated along this line, are presented in figure 10. As the width of the lattice
is increased, the jump in the density becomes sharper. The height of the fluctuations (shown
with a log-linear scale in figure 11) increases extremely rapidly with lattice width, strongly
suggesting a delta peak in the thermodynamic limit. Whilst the range of lattice widths prevent
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Figure 9. Phase diagram estimates calculated using the condition that the largest eigenvalue
λ1 = 1 odd lattice widths (top) and even lattice widths (bottom).

us from being categorical, the results suggest strongly that the transition is first order along
the transition line. This seems to be confirmed in the phase diagram. In both figures 4 and 9
the transition line has a discontinuous slope at βH.

The positions of the peaks of density fluctuations are shown in figure 11 along with the
positions of the cusps where the upper and lower critical lines join for even lattice widths.
We estimate βH = 1.00 ± 0.02, with KH = exp(−βH). It is strange that βH should be
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Figure 10. Density (top) and density fluctuations (bottom) along the transition line as estimated
using the condition that the largest eigenvalue λ1 = 1.

so close to one, though we have as yet not been able to determine why this should be the
case.

4. The Hamiltonian walk limit (K → ∞)

In the limit K → ∞ the walk will fill the lattice maximally. Each site will be visited once
only. In this limit the walk becomes what is known as an Hamiltonian walk [24]. The effect of
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Figure 11. Finite-size estimates of βH, the value of β at the collapse transition. The upper points,
calculated for even lattice widths, come from the estimated position at which the two critical
lines merge. The lower points, calculated for the odd lattice sizes, come from the peaks of the
fluctuations in N. The error bars given correspond to the interval between the points calculated.
These error bars could be reduced at an additional cost in computer time.

this interaction in this limit is to energetically penalize corners in the walk. This is similar to
the Flory model [26] except that there are configurations which introduce one or two corners
into the walk with no difference in energy (figure 2).

There is a low temperature corner-free phase. As the temperature is raised there is a
transition in which the density of corners becomes non-zero. To distinguish between the high
and low temperature phases it is possible to use either the density of corners or the energy
density. This latter is shown as a function of β in figure 12.

We estimate the critical temperature again using the phenomenological renormalization
group, the results of which are shown in table 2 and extrapolated using a three-point fit to

β∞
c = βLc +ALB (24)

where βc is the finite-size estimate and β∞
c is the extrapolated value. A and B are constants to

be determined.
Only the odd lattice widths presented solutions to the phenomenological renormalization

group equation (19), given in table 2. The positions and values of the maxima of the energy
fluctuations per site, shown in figure 13, are also reported in table 2. The fluctuations appear
to saturate. We assume that, even if the fluctuations do not diverge, the transition point is
estimated by the value of β for which the fluctuations are maximal. This agrees well with the
phenomenological renormalization group estimate, and fits with a continuation of the finite
K phase diagrams (figure 4) to high values of K. Phenomenological renormalization and the
peaks of the energy fluctuations give estimates of the critical temperature which concur, giving
βc = 0.476 ± 0.001.
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Figure 12. Energy density as a function of β in the K → ∞ limit for odd lattice widths (top) and
even lattice widths (bottom).

It is also possible to estimate the exponant η, using the conformal invariance result for
periodic boundary conditions [23]

η = L

πξ
.

We find ηc = 0.096 ± 0.002 (table 2).
It is anticipated that the entire high temperature phase is critical, in analogy with other

models of this type, such as the model F [25], the Flory model [26] and the loop gas model on
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Table 2. Estimates for (a)βc , ν and η in theK → ∞ limit using phenomenological renormalization
group with strips of width L and L + 2 and (b) βLc , the critical value of β as estimated from the
peak of the interaction fluctuations, the height of the peak (fmax) and the value of η calculated the
extrapolated value of βc . Even and odd lattice widths are taken apart.

(a) (b)

L βc ν η βLc Cmax η
(
β∞
c

)

3 0.450 472 1.109 084 0.082 484 0.435 221 1.714 121 0.087 226
4 – – – 0.375 742 1.875 099 0.035 357
5 0.461 359 1.060 628 0.085 672 0.465 233 2.124 762 0.090 245
6 – – – 0.437 435 2.260 666 0.047 824
7 0.465 970 1.105 916 0.087 611 0.471 160 2.354 970 0.092 053
8 – – – 0.454 834 2.491 249 0.056 830
9 – – – 0.473 274 2.492 086 0.093 240

10 – – – 0.461 866 2.636 003 0.064 064

L → ∞ 0.477 – – 0.476 ± 0.001 2.867 0.096 ± 0.002
(odd)
L → ∞ – – – 0.473 ± 0.003 3.071 0.10 ± 0.01
(even)

the brickwork lattice [27]. The estimates of ν are not at all clear. They seem close to ν = 1,
but in other respects the transition is similar to that seen in the model F and the Flory model,
which have transitions of infinite order with ν infinite.

5. Conclusions

In this paper we have presented a two-dimensional model for homopolymer collapse under
the influence of ‘hydrogen-bonding’ like nearest-neighbour interactions. The phase diagram
is quite different from the equivalent θ -point phase diagram; the collapse transition is now first
order. This is also observed in the oriented interacting self-avoiding walk model, where,
for appropriate values of the model parameters, a first-order collapse occurs to a spiral
configuration [28]. These two models have in common that the collapsed phase is anisotropic,
in our case one of the two lattice directions is selected, and in the oriented walk case, for strong
enough parallel interaction strength, one of the two chiralities is selected. In the standard θ
model the collapsed phase is isotropic.

Here we also observe an additional transition in the dense walk regime. This transition
appears to be second order, though for the moment we have not been able to determine to any
accuracy any of the critical exponents. Similar critical lines are observed in the loop models
with corner interactions, with or without a collapse transition [27, 29].

There also exists a non-trivial critical behaviour in the K → ∞ limit, where there is a
finite-temperature phase transition between a critical high temperature phase and a frozen low
temperature phase.

Another well-studied model with a qualitatively similar phase diagram is the partially
directed interacting polymer model [30, 31]. There are major differences however: The line
K = exp(−β) corresponds to a phase transition line for all values of K, deliminating a similar
fully collapsed phase. The equivalent phase to the finite-ρ phase has a density ρ = 0 due to
the directed nature of the model. The equivalent to the θ -point transition is second order [30].
(here it appears to be first order.)
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Figure 13. The energy fluctuations in the K → ∞ limit for odd lattice widths (top) and even
lattice widths (bottom).
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Università di Padova during the early stages of this work.

References

[1] de Gennes P G 1979 Scaling Concepts in Polymer Physics (Ithaca: Cornell University Press)
Vanderzande C 1998 Lattice Models of Polymers (Cambridge: Cambridge University Press)



Two-dimensional self-avoiding walk with hydrogen-like bonding 9957

des Cloiseaux J and Jannink G 1990 Polymers in Solution: Their Modelling and Structure (Oxford: Oxford
University Press)

[2] Wall F T and Mazur J 1961 Ann. New York Acad. Sci. 89 573
[3] Domb C 1974 Polymer 15 259
[4] Flory P J 1971 Principles of Polymer Chemistry (Ithaca: Cornell University Press)
[5] de Gennes P G 1972 Phys. Rev. Lett. A 38 339
[6] Vilanove R and Rondelez F 1980 Phys. Rev. Lett. 45 1502

Vilanove R, Poupinet D and Rondelez F 1988 Macromolecules 21 2880
[7] Duplantier B and Saleur H 1987 Phys. Rev. Lett. 59 539
[8] Seno F and Stella A L 1988 J. Physique 49 739

Vanderzande C, Stella A L and Seno F 1991 Phys. Rev. Lett. 67 2757
[9] Meriovitch H and Lim H A 1989 Phys. Rev. Lett. 62 2640

[10] Lawrie I D and Sarbach S 1984 Phase Transitions and Critical Phenomena ed C Domb and J L Lebowitz
(London: Academic) vol 9

[11] Bascle J, Garel T and Orland H 1993 J. Physique II 3 245
[12] Pauling L and Corey R B 1951 PNAS 37 235, 251, 272, 729
[13] Stanley H E 1971 Introduction to Phase Transitions and Critical Phenomena (Oxford: Oxford University Press)
[14] Mandelbrot B B 1984 The Fractal Geometry of Nature (San Francisco: Freeman)
[15] Klein D G 1980 J. Stat. Phys. 23 561

Enting I G 1980 J. Phys. A: Math. Gen. 13 3713
Derrida B 1981 J. Phys. A: Math. Gen. 14 L5

[16] Derrida B and Herrmann H G 1983 J. Physique 44 1365
[17] Derrida B and Saleur H 1985 J. Phys. A: Math. Gen. 18 1075
[18] Veal A R, Yeomans J M and Jug G 1991 J. Phys. A: Math. Gen. 24 827
[19] Thompson C 1988 Classical Equilibrium Statistical Mechanics (Oxford: Oxford University Press)
[20] Yeomans J M 1992 Statistical Mechanics of Phase Transitions (Oxford: Oxford University Press) ch 5
[21] Golub G H and Van Loan C F 1989 Matrix Calculations (Battimore, MD: Johns Hopkins University Press)
[22] Nightingale M P 1976 Physica A 83 561
[23] Cardy J L 1987 Phase Transitions and Critical Phenomena ed C Domb and J L Lebowitz (New York: Academic)

vol 11
[24] Barber M N 1970 Physica 48 237
[25] Lieb E M and Wu F Y 1972 Phase Transitions and Critical Phenomena ed C Domb and M S Green (New York:

Academic) vol 1
Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic)

[26] Saleur H 1986 J. Phys. A: Math. Gen. 19 2409
[27] Eghbal F, Foster D P and Orland H 1998 J. Phys. A: Math. Gen. 31 1685
[28] Trovato A and Seno F 1997 Phys. Rev. E 56 131
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